Hexasulphur Tetranitrogen Dichloride, S₆N₄Cl₂ : Crystal Growth and Crystal Structure †

Ronald W. H. Small Department of Chemistry, University of Lancaster, Bailrigg, Lancaster LA1 4YA **Arthur J. Banister * and Zdenek V. Hauptman** Department of Chemistry, University of Durham, South Road, Durham DH1 3LE

Crystals of the title compound (commonly called thiodithiazyl chloride) are orthorhombic, space group *Pbca*, with a = 7.88(1), b = 14.46(1), c = 8.19(1) Å, and Z = 4. The structure was refined to R = 0.031 using 563 (of the 792 unique) measured intensities for which $l > 3\sigma(l)$. The dimeric cation contains two centrosymmetric planar S_3N_2 rings in a chair (*trans*) conformation. Distances are S(1)-N(1) 1.563(5), N(1)-S(3) 1.618(4), S(2)-S(3) 2.131(2), S(2)-S(3') 2.916(2), and CI-S(2,3) 2.842(2), 2.858(2) Å. The dihedral angle between the S_3N_2 ring plane and the central S_4 ring is 110.4(3) °. Crystals of $S_6N_4Cl_2$ were grown by three different methods based on (*i*) a reversible temperature-dependent ring expansion–contraction ($S_6N_4Cl_2 \leftrightarrow S_4N_3Cl$) equilibrium in SO_2 – $SOCl_2$ mixtures, (*ii*) a complex chemical transport (vapour–liquid–solid) in a sealed tube containing (initially) $S_3N_2Cl_2$ and liquid SO_2 , and (*iii*) a controlled slow reaction of $S_3N_2Cl_2$ with liquid SO_2 . The last method is a particularly convenient laboratory synthesis of pure $S_6N_4Cl_2$. Solid $S_6N_4Cl_2$ shows a strong e.s.r. signal which is independent of temperature (in the range -139 to +22 °C), indicating the presence of a little monomer.

The compound with empirical formula S_3N_2Cl , commonly called thiodithiazyl chloride, is one of the few simple sulphurnitrogen halides of hitherto unknown structure, and several structural types have been predicted.¹⁻³ The dark green (almost black) and metallic appearance of S_3N_2Cl , and its lack of solubility in virtually all solvents (except when accompanied by decomposition), indicated a polymeric structure.³ The absence of a chlorine n.q.r. signal ¹ pointed to an ionic lattice and this was reinforced by the isolation of ionic derivatives (with $ClS_2O_6^{-,1}S_2O_2F^{-,4}$ or SO_3F^{-} ions ⁴). In these salts, the cation is dimeric with two delocalised S_3N_2 rings in a *trans* conformation (I); however, isoelectronic phenyldithiadiazole contains two *cis* (eclipsed) rings, structure (II). Monomeric $S_3N_2^+$ salts have also been prepared.⁴⁻⁶

Since doubt remained as to the structure of S_3N_2Cl (and also since a small anion facilitates more compact structures), we studied methods of synthesis and crystal growth and carried out an X-ray diffraction analysis which showed that the chloride is dimeric. The reaction between $S_3N_2Cl_2$ and liquid SO_2 is a simple and convenient method of preparation and gives pure crystalline $S_6N_4Cl_2$. We also describe the preparation of a carmine red form of $S_6N_4Cl_2$.

Experimental

Manipulations of solids were carried out in a Vacuum Atmospheres Corporation glove box (HE43-2). I.r. spectra were obtained using a Perkin-Elmer grating spectrophotometer (model 577) and Raman spectra were recorded using a Cary 82 spectrometer with green (514.5 nm) exciting line. Haake refrigerated bath circulators (type F2-C, range -15 to +90 °C) were used to provide circulating water with a steady temperature or a controlled temperature gradient (as in the purification of S₆N₄Cl₂).

After combustion of samples in oxygen, nitrogen analysis was by the micro-Kjeldahl method, sulphur was determined as $BaSO_4$ and chlorine by potentiometric titration as AgCl.

Thionyl chloride was purified by fractional distillation from triphenyl phosphite.⁷ Liquid SO₂ was dried over P_4O_{10} , distilled and stored over CaH₂; it was transferred to reaction vessels *via* a Monel metal vacuum line. $S_6N_4Cl_2$ was obtained from $S_3N_2Cl_2$ (prepared from NH₄Cl and S_2Cl_2)⁸ either by heating ⁹ or by dechlorination with SO₂.¹⁰

Purification of Crude S₆N₄Cl₂.--Continuous extraction with liquid SO₂ (15 min at ca. 2 cm³ SO₂ per min) in a sealed extractor, shown in Figure 1 (with evaporator flask at 25 °C and water-cooled extraction compartment at 10 °C), proved an efficient means of purification. After placing S₆N₄Cl₂ on the frit and evacuation, dry SO₂ was condensed in. Impurities (largely S_4N_3Cl which produced a yellow solution) were extracted until the SO₂ refluxing through the frit was colourless. Extraction for several hours gave tiny (ca. 0.05 mm wide) platelets of S₆N₄Cl₂ in the filtrate. During further extraction these crystals decomposed to S_4N_3Cl ; nevertheless, above the SO₂ surface, tiny crystals of S₆N₄Cl₂ remained and grew on the flask walls (cooler due to rapid evaporation of SO₂), hence indicating that the reaction in the bulk SO_2 solution ($S_6N_4Cl_2$) \rightarrow S₄N₃Cl) was reversed at the lower temperatures of the glass surface. We therefore interpret the reported 11 slight solubility of $S_6N_4Cl_2$ in liquid SO₂ as being largely due to chemical reaction. A similar conversion to S₆N₄Cl₂ occurs when solutions of S_4N_3Cl in SOCl₂ are cooled to ca. -5 °C; S₄N₃Cl is regenerated on warming.¹²

This facile temperature-dependent and reversible interconversion $S_6N_4Cl_2 \leftrightarrow S_4N_3Cl$ was exploited in the preparation of small crystals of $S_6N_4Cl_2$ (methods 1 and 2).

Method 1. Sealed Tube Recrystallisations of $S_6N_4Cl_2$ Suspended in SO_2 -SOCl₂.—Five sealed Pyrex ampoules

[†] Supplementary data available (No. SUP 23912, 9 pp.): structure factors, thermal parameters, projection of the unit cell. See Instructions for Authors, J. Chem. Soc., Dalton Trans., 1984, Issue 1, pp. xvii—xix.

Figure 1. Sealed extractor for liquid SO₂: A, evaporator flask; B, sintered filter (porosity grade 3); C, water jacketted extraction compartment; D, Rotaflo valve (TF6/18); E, $\frac{1}{4}$ -inch o.d. connection to Swagelok-type metal union

(inside diameter 8 mm, length 140 mm) were prepared each containing purified S₆N₄Cl₂ (ca. 150 mg) and a mixture (total vol. ca. 8 cm³) of SO₂-SOCl₂: (a) 100: 0, (b) 95: 5, (c) 80: 20, (d) 67 : 33, and (e) 0 : 100 v/v. A quartz e.s.r. tube (o.d. 4 mm) (f) was also prepared containing mixture (c). All tubes (a)-(f) were kept for 12 months with repeated temperature variations: 6 d in a freezer (T_1 ca. -20 °C) and one day at room temperature (T₂ ca. 18 °C). Gradual increase in crystallite size of $S_6N_4Cl_2$ was clearly observable in ampoules (b)---(d) and (f). All the tubes were occasionally dipped (for ca. 3 min) in an ultrasonic bath to disperse crystal clusters. The best results were obtained with ampoule (c); well formed crystals of S₄N₃Cl appeared at the end of the warmer T_2 period, but during the cooling period (T_1) they disappeared completely and were replaced by numerous platelets of S₆N₄Cl₂ (up to 100 µm long) which nucleated on the tube wall.

In tubes (a) and (b), some S_4N_3Cl crystals remained on cooling and recrystallization was slow. In tube (e) the $S_6N_4Cl_2$ was unaffected; no S_4N_3Cl was formed during the entire 12-month period.

Raman spectra of the yellow supernatant solutions in all ampoules were examined at intervals and showed bands due to SO_2 and $SOCl_2$. Tubes (c) and (f) showed an extra unidentified weak band at 1 048 cm⁻¹.

At the end of the 12-month period no tubes showed an overpressure of nitrogen and tubes (c) and (f) provided a large number of well faceted approximately equidimensional crystals up to *ca*. 0.30 mm in length. The supernatant solution from tube (f) was decanted and pumped to dryness to give 10 mg of yellow crystals. I.r. spectra showed peaks due to S_4N_3Cl and five additional absorptions at 1 275s, 1 140m, 1 050m, 585w (sh), and 540w cm⁻¹ which could not be assigned to known sulphur-nitrogen compounds.

E.s.r. measurements. The supernatant SO₂-SOCl₂ solution in tube (f) gave a moderately strong e.s.r. spectrum near room temperature comprising a 1:2:3:2:1 quintet having a line spacing of 0.316 mT and a g factor of 2.01130 \pm 0.00002.

Figure 2. E.s.r. powder spectrum of $S_6N_4Cl_2$ (G = 10⁻⁴ T)

Cooling to ca. -60 °C caused the signal to disappear. Interestingly, the yellow colour of the solution at room temperature changed sharply to deep purple at ca. -60 °C. The change was reversible. In contrast, the solid S₆N₄Cl₂ gave a strong e.s.r. signal (shown in Figure 2) that is characteristic of powders and is temperature independent between -139and +22 °C. A more detailed assessment of the e.s.r. spectra is in progress.

Method 2. Growth of S₆N₄Cl₂ Crystals by Vapour Transport during S₃N₂Cl₂-SO₂ Reaction.---A sealed Pyrex tube (volume 12 cm³) containing S₃N₂Cl₂ (1.3 g) and liquid SO₂ (5.5 cm³) was placed horizontally in a sharp temperature gradient [+35 to -8 °C, Figure 3(a)]. After one week most of the initial $S_3N_2Cl_2$ was converted to $S_6N_4Cl_2$ and well formed platelets [Figure 3(b)] grew on the upper wall (well above the SO₂ level) at ca. 5 °C in the zone of steepest temperature gradient (ca. 15 °C cm⁻¹). This is the first example, in sulphur-nitrogen chemistry, of crystal growth by chemical transport. Well developed crystals of S_4N_3Cl also grew above the SO_2 level, but in the warmer (35 °C) zone (cf. method 1). Although the $S_6N_4Cl_2$ crystals produced by this method showed nearly perfect rectangular facets on all sides, they adhered to the tube wall so strongly that it proved impossible to remove them without fracture. The identity of the S₄N₃Cl single crystals (up to 0.5 mm across), which separated easily from the wall, was established by a single-crystal precession photograph and a comparison with the known unit cell of this compound 13 [space group $P2_1/n$, a = 19.29(2), b = 10.46(1), c = 9.36(1) Å, $\beta = 90.29^{\circ}, Z = 12$].

Method 3. Preparation of Crystalline $S_6N_4Cl_2$ by the Reaction of $S_3N_2Cl_2$ with Liquid SO_2 .—Finely ground $S_3N_2Cl_2$ was transferred in a glove box to a flask equipped with a Rotaflo valve and sulphur dioxide was condensed in (*ca.* 20 cm³ liquid SO_2 per gram of $S_3N_2Cl_2$). The dechlorination was almost complete (with occasional shaking) after *ca.* 5 d at room temperature; the reaction appeared to be catalyzed by sunlight.

After evaporation to dryness, the impure $S_6N_4Cl_2$ was transferred to the sealed extractor (Figure 1). Unreacted $S_3N_2Cl_2$ and by-product S_4N_3Cl were removed by SO_2 extraction (typically 15 cm³ SO₂, 0.3 g $S_3N_2Cl_2$, jacket cooled with tap water at 10 °C, flask at 25—30 °C) until the fresh filtrate was colourless (*ca.* 2 h). The uniformly microcrystalline product (shiny green-black thin platelets, approx. 5 µm across) gave a well resolved X-ray powder diagram as shown in Table 1 (Found: Cl, 22.3; N, 17.7; S, 60.1. $S_6N_4Cl_2$ requires Cl, 22.2; N, 17.5; S, 60.2%).

Figure 3. (a) $S_6N_4Cl_2$ crystal growth (from $S_3N_2Cl_2$ -SO₂) by chemical vapour transport in a sealed tube in a temperature gradient (+35 to -8 °C): A, liquid SO₂; B, $S_3N_2Cl_2$ in situ converted to $S_6N_4Cl_2$; C, growth site of $S_6N_4Cl_2$ crystals; D, S_4N_3Cl crystals; E, temperature profile along the tube. (b) Crystals of $S_6N_4Cl_2$ at site C photographed through the tube wall

2.559

2.176

2.066

1.888

1.675

1.519

12

13

14

15

16

17

Differenti	an d	1 4				1 / 1	J/J b
Dinractio	on <i>a_{hki}</i>	Unkl "	,			1/10	1/10
line no	(obs.)	(calc.)	h	ĸ	1 "	(obs.)	(caic.)
I	7.290	7.230	0	2	0	w	11
2	5.317	5.286	1	1	1	vs	100
3	4.103	4.095	0	0	2	w	10
4	3.816	3.801	2	1	0	m	15
5	3.665	3.675	1	3	1)		27
		3.633 ∫	1	0	2∫	m	27
6	3.519	3.524	1	1	2	S	46
7	3.200	3.187	2	2	1	vs	78
8	3.058	3.050	2	3	0	S	27
9	2.857	2.859	2	3	1)	_	42
		2.839	2	0	2	S	43
10	2.792	2.786	2	1	2	m	10
11	2.659	2.664	2	4	0)	_	53

2.643

2.563

2.554

2.178

2.057

1.886

1.877

1.677

1.666

1.513)

1.513

2 2 2

1 4 2

0 2 3

0

0

3 4 2)

3

3

4 5

4

4

6 2

1

4 3

3

3)

1

2)

53

30

5

12

10

8

8

s

S

m

m

m

m

m

Table 1. X-Ray powder diffraction data of S₆N₄Cl₂

				- /		
18	1.404	1.408	28	3	m	8
19	1.150	1.152	2 12	0	w	1
20	0.869				w	
^e The unit-cel computer pro- and H. T. Ev Powder Diffi Division Wa	l parameters gram to gen ans, jun., 'Ir raction Dat shington D	of S_6N_4Cl erate index indexing and a,' U.S.	were u ed d_{hkl} v d Least Geologi	sed as alues (Squar cal S	input da (D. A. A) es Refine urvey, (ata for a ppleman ement of Geologic
calculated fro diffraction lin	es overlappi	factor dai	ta obtai	ned in or in n	n this wo	ork. For nent) the
relative intens	mv uata are	given as a	Sum IO	i ine t	wo sets a) I NKL.

Crystals large enough for the X-ray structure determination were obtained from $S_3N_2Cl_2$ by a controlled extraction with sulphur dioxide as follows. With unground $S_3N_2Cl_2$ (0.35 g) on the frit [Figure 1, C] at 0 °C and liquid SO₂ at 15 °C in the flask (protected from sunlight), there was a steady flow of weak $S_3N_2Cl_2$ solution into the flask; the solubility of $S_3N_2Cl_2$ in SO_2 is very low. After 14 d, the extent of reaction was ca. 50%. The platelets of $S_6N_4Cl_2$ on the frit were mixed with unreacted $S_3N_2Cl_2$ but the flask contained numerous well formed thin (ca. 2 µm, and up to ca. 1 mm wide) transparent (red) platelets of $S_6N_4Cl_2$, a few of which were thick enough (ca. 10 µm) to be handled. These crystals gave clear diffraction spots (better resolved than for crystals from method 1) and so were used for the structure determination.

Method 4. The Red Form of S₆N₄Cl₂.—Cyanamide, NCNH₂ (0.042 g, 1 mmol) was added gradually to powdered S₃N₂Cl₂ (0.195 g, 1 mmol) in an agate mortar, with grinding after each addition. The heat of reaction caused melting of the cyanamide to give a rusty brown paste; this crystallized on standing (several hours). Grinding then gave a dark brown powder. No gas was evolved during the reaction. I.r. absorptions (Nujol mull) were observed at 3 180m, 2 160vs, 1 695vs, 1 171s, 913m, 791vs, 669s, 482s, 382vs, 350s, 283s, 170vs, 138s, and 90m cm⁻¹; m.p. 91 °C (with decomposition to a red-brown liquid).

The adduct rapidly decomposed in liquid SO₂ (at -3 °C) to give a carmine red precipitate which was identified as pure $S_6N_4Cl_2$ from the X-ray powder diagram (identical with that

Atom	x	у	z
S(1)	-136(2)	2 777(1)	8 950(2)
S(2)	499(2)	4 564(1)	7 964(2)
S(3)	1 739(2)	4 216(1)	10 193(2)
N(1)	1 104(6)	3 152(3)	10 284(6)
N(2)	- 398(6)	3 554(3)	7 657(6)
CÌ	2 695(2)	6 003(1)	9 022(2)

of the usual green-black form given in Table 1) and from the i.r. spectrum: 1018m, 962s, 944s, 707vs, 698vs, 585s, 433s, and 371s cm⁻¹. The two forms are both stable in dry air.

Crystal Structure of S₆N₄Cl₂.—Crystal data. S₆N₄Cl₂, orthorhombic, space group Pbca, a = 7.88(1), b = 14.46(1), c = 8.19(1) Å, U = 933.2 Å³, Z = 4, $D_c = 2.27$ Mg m⁻³, $F(000) = 632, \lambda(Mo-K_{\alpha}) = 0.7107 \text{ Å}, \mu = 1.842 \text{ mm}^{-1}$. Intensity data from a crystal of dimensions $0.35 \times 0.007 \times 0.30$ mm were collected for the layers l = 0-9 on a Stoe STADI-2 automatic two circle diffractometer using graphite-monochromatised Mo- K_{α} radiation. Absorption corrections were applied to the 792 unique measured reflections; of these, 563 having $I > 3\sigma(I)$ were retained for refinement of the structure. All calculations were carried out with the SHELX ¹⁴ suite of programs.

Structure determination. A model of the structure was obtained by the use of the direct-methods program EEES of the SHELX suite. Positional and anisotropic thermal parameters for all six atoms were refined by full-matrix least squares. At a later stage individual scale factors for the data collection layers were refined. When the parameter shifts were all less than 10^{-3} of the corresponding e.s.d., R was 0.031 and the refinement was terminated. Atomic scattering factors were taken from ref. 15. The final atomic co-ordinates are given in Table 2.

Structural data. The structure and dimensions are shown in Figure 4 and in Table 3. As found for the chlorodisulphate,¹ the two parallel S_3N_2 rings are planar ¹⁰ to within one e.s.d. (0.02 Å) and are joined by weak S⁻ bonds to form a centrosymmetric tricyclic dimer. The dihedral angle between the plane of the S₃N₂ ring and that of the S₄ ring is 110.4(3)° $[109.4(2)^{\circ}$ in the ClS₂O₆⁻ salt; this angle was calculated from atomic co-ordinates given in ref. 16].

Results and Discussion

The initial experiments in this study arose from the observation ¹² that solutions of S₄N₃Cl in SOCl₂, when cooled below ca. -5 °C deposited not only yellow S₄N₃Cl but also greenblack $S_6N_4Cl_2$. The very small $S_6N_4Cl_2$ crystals that formed (and the green inclusions in the S₄N₃Cl crystals) disappeared on warming. The solutions remained yellow throughout the process. This interconversion was also observed in pure SO, during solvent extraction of crude S₆N₄Cl₂ (see Experimental section) hence leading to preparation method 2.

1. Sealed Tube Recrystallisation of $S_6N_4Cl_2$ suspended in SO₂-SOCl₂.—These experiments confirmed the remarkably facile interconversions of S₄N₃Cl and S₆N₄Cl₂, and helped to indicate suitable conditions for crystal growth of S₆N₄Cl₂ in method 2.

2. Growth of S₆N₄Cl₂ Crystals by Vapour Transport.-In this method (sealed tube of S₃N₂Cl₂-liquid SO₂ placed in a

Figure 4. The $S_6N_4Cl_2$ molecule, with distances (Å) and angles (°)

temperature gradient of +35 to -8 °C), S₆N₄Cl₂ and S₄N₃Cl crystals were formed within a film of liquid SO₂ on the upper side of the horizontal reaction tube (Figure 3). Since they are practically involatile at the maximum temperature of the reaction tube (35 °C), we concluded that their crystal growth occurred as a result of a chemical transport reaction *via* some volatile covalent intermediate(s) present in low concentration, probably detected in (*i*) the Raman spectra of solutions (one extra band at 1048 cm⁻¹) and/or (*ii*) i.r. spectra of dry residues (*ca.* five additional i.r. bands). Possible intermediates are S=N-SCl, O₂S=N-SCl, S-S-N=S=N, or O₂S-S-N=S=N, all of which are unknown. Equilibria involving other undetected volatiles are also likely [*e.g.* as in equations (1) and

$$S_{N-S} = S_4N_4 + S_2CI_2 \quad (1)$$

$$3 S_4 N_4 + 2 S_2 C I_2 = 4 S_4 N_3 C I$$
 (2)

(2)]. Reaction (2) is known.¹⁷ The free-radical monomer S_3N_2Cl (detected by the e.s.r. method) was also present.

Since S_4N_3Cl has shorter mean d(SN) (1.555 Å), shorter d(SS) (2.078 Å) and also less strained ring angles than $S_6N_4Cl_2$ (see section 4 below), it is curious that this stable species decomposes to $S_6N_4Cl_2$ on *cooling*. Several reasons are possible: perhaps $S_6N_4Cl_2$ dissociates on warming to produce, in addition to S_4N_3Cl , some other stable species which may then react with the solvent (thus supporting the above discussion of possible reactions).

In both methods 1 and 2 for preparing crystalline $S_6N_4Cl_2$, the formation of $S_6N_4Cl_2$ (rather than S_4N_3Cl) required temperatures below *ca.* 5 °C. Crystallite growth from solution due to fluctuating temperature is well known; the driving force for the process is the minimization of surface free energy, ΔG_s . But the difference in our case is that the dissolutionprecipitation cycle is accompanied by chemical reaction.

3. Preparation of Crystalline $S_6N_4Cl_2$ from $S_3N_2Cl_2$ -SO₂.---As described above (method 2) and in agreement with Vincent *et al.*¹⁰ we observed that liquid SO₂ dechlorinates $S_3N_2Cl_2$ at room temperature: equation (3). When the impure product is

$$2 S_3 N_2 C l_2 + S O_2 \longrightarrow S_6 N_4 C l_2 + S O_2 C l_2 \qquad (3)$$

removed and extracted with further liquid SO₂, the reaction goes to completion, contaminants (principally S₄N₃Cl) are removed and the method provides a very simple and convenient preparation of S₆N₄Cl₂. The purity is superior to that obtained by other methods,¹¹ the product is crystalline (typically 5 μ m wide, thin microcrystals) and the yield [*ca*. 85% based on equation (3)] is high. In comparison, the theoretical yield by the standard method ⁹ (vacuum decomposition of S₃N₂Cl₂) is 67%: equation (4).

$$3 S_3 N_2 Cl_2 \xrightarrow{ca.85 \circ C} S_6 N_4 Cl_2 + 2 NSCl + SCl_2 \quad (4)$$

Green-black $S_6N_4Cl_2$ leaves a carmine red trace when rubbed on paper.¹¹ The red form of $S_6N_4Cl_2$ obtained by method 4 is an identical colour. A similar carmine deposit (presumably $S_6N_4Cl_2$) is formed on the walls when a glow discharge (*e.g.* as generated by a high frequency spark tester) acts on $S_3N_2Cl_2$ in an evacuated vessel.

.....

4. Structure and Bonding in $S_6N_4Cl_2$.—The S-N ring distances in the cation [d(SN) = 1.557 - 1.642 Å] are the longest where adjacent to the SS bond, which is consistent

Table 3. Bond distances	Å) and angles (°) for S ₆ N ₄ Cl ₂ compared	1 with those for $[S_6N_4][ClS_2O_6]_2^{1,16}$
-------------------------	--	--

S ₆ N ₄ Cl ₂	$[S_6N_4][ClS_2O_6]_2$	(b) Angles	S ₆ N ₄ Cl ₂	$[S_6N_4][ClS_2O_6]_2$
1,563(5)	1,563(3)	N(1)-S(1)-N(2)	107.9(2)	107.6(2)
1.557(5)	1.574(3)	S(1) - N(2) - S(2)	118.7(3)	119.1(2)
1.618(4)	1.609(3)	S(1) - N(1) - S(3)	119.4(3)	119.55(20)
1.642(4)	1.601(3)	N(2)-S(2)-S(3)	96.8(2)	97.2(2)
2.131(2)	2.145(1)	N(1)-S(3)-S(2)	97.0(2)	96.6(2)
2.916(2)	3.027(1)			
2.842(2)				
2.858(2)		Symmetry codes		
3.152(2)		Superscript I: $-x$, $1 - y$	v, 2 - z	
3.207(2)		Superscript II: $\frac{1}{2} - x$, $\frac{1}{2}$	-y, z	
3.184(2)		Superscript III: $\frac{1}{2} - x$, 1	$-y, z - \frac{1}{2}$	
	$S_6N_4Cl_2$ 1.563(5) 1.557(5) 1.618(4) 1.642(4) 2.131(2) 2.916(2) 2.842(2) 2.858(2) 3.152(2) 3.207(2) 3.184(2)	$\begin{array}{c cccc} S_6N_4Cl_2 & [S_6N_4][ClS_2O_6]_2 \\ \hline 1.563(5) & 1.563(3) \\ \hline 1.557(5) & 1.574(3) \\ \hline 1.618(4) & 1.609(3) \\ \hline 1.642(4) & 1.601(3) \\ \hline 2.131(2) & 2.145(1) \\ \hline 2.916(2) & 3.027(1) \\ \hline 2.842(2) \\ \hline 3.152(2) \\ \hline 3.152(2) \\ \hline 3.184(2) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

with valence bond canonical structures of the form shown below.

Within the S_3N_2 rings, the SS and SN distances [d(SS) = 2.131(2), d(SN) = 1.557(5)-1.642(4) Å] are typical of S_3N_2 ring systems [in which d(SS) and mean d(SN) have been found ¹⁸ to vary: d(SS) = 2.13-2.23 Å and d(SN) = 1.58-1.61 Å].

Compared with the $ClS_2O_6^-$ salt (Table 3), the SS bonds (within and between the S_3N_2 rings) are slightly stronger and the adjacent SN bonds are slightly weaker. An analogous situation occurs for the chloride and tetrachloroferrate(III) salts of $S_3N_2Cl^+$; the larger charge transfer from Cl^- (compared with FeCl₄⁻) again strengthens (by 0.045 Å)¹⁸ the sulphur-sulphur link in the S_3N_2 ring.

The bond angles all betray some compression due to constraint within a small ring. Correlations ¹⁹ between bond distances (pm) and bond angles (°) for unstrained and largely unstrained sulphur-nitrogen compounds [*viz.* d(NS) = 177.47

177.47 - 0.1421 N (angle at nitrogen) and d(SN) = 213.14 - 0.1421 N (angle at nitrogen)

0.4816 S (angle at sulphur) pm] indicate compressions of the order of 10° at both N and S (*cf.* the S_3N_2 ring in $S_3N_2Cl^+$).²⁰ This situation contrasts with that for S_4N_3Cl which has wider and largely unstrained angles [NSN = 118.1—119.5(2)° and SNS = 135.0—135.9(2) or 150.4—152.4(3)°] and has a shorter mean d(SN) (1.555 Å).¹³

The chloride 'ions' in $S_6N_4Cl_2$ contact only sulphur atoms. van der Waals radii for sulphur and for the chloride ion are both *ca.* 1.8 Å and the contact distances are all below 3.6 Å: two at 2.84—2.86 Å and three at 3.15—3.21 Å (Table 3). Similar S-Cl distances were found ²⁰ for [S₃N₂Cl][FeCl₄] (two close to 2.85 Å and two at 3.14—3.22 Å) and for S₄N₃ [2.808(2) and 2.921(2) Å to the disulphide sulphurs].¹³ In S₆N₄Cl₂, one of the effects of weak S ··· Cl bonding (at > 2.86 Å) is a 0.29(2) Å displacement of Cl⁻ from the plane of the nearer S₃N₂ ring away from the neighbouring S₃N₂ ring.

The similar distances between Cl and $S(1^{1})$, $S(1^{11})$, and

 $S(3^{111})$ probably represent an equilibrium value for a weak residual ionic effect, while the shorter S(2)-Cl and S(3)-Cl distances include an additional covalent contribution. The compound is therefore not strictly a dimeric dithiadiazolium salt, hence the choice of the trivial name hexasulphur tetranitrogen dichloride.

Acknowledgements

We thank the S.E.R.C. for a research grant and Dr. L. H. Sutcliffe for the e.s.r. measurements and valuable comments.

References

- 1 A. J. Banister, H. G. Clarke, I. Rayment, and H. M. M. Shearer, Inorg. Nucl. Chem. Lett., 1974, 10, 647.
- 2 M. Becke-Goehring, Prog. Inorg. Chem., 1959, 1, 221.
- 3 O. Glemser, Angew. Chem., Int. Ed. Engl., 1963, 2, 530.
- 4 R. J. Gillespie, J. P. Kent, and J. F. Sawyer, *Inorg. Chem.*, 1981, 20, 3784.
- 5 H. W. Roesky and A. Hamza, Angew. Chem., Int. Ed. Engl., 1976, 15, 226.
- 6 R. J. Gillespie, P. R. Ireland, and J. E. Vekris, Can. J. Chem., 1975, 53, 3147.
- 7 L. Friedman and P. Wetter, J. Chem. Soc. A, 1967, 36.
- 8 W. L. Jolly and K. D. Maguire, Inorg. Synth., 1967, 9, 106.
- 9 W. L. Jolly and K. D. Maguire, Inorg. Synth., 1967, 9, 109.
- 10 H. Vincent, Y. Monteil, and M. P. Berthet, Z. Anorg. Allg. Chem., 1980, 471, 233.
- 11 H. G. Heal, 'The Inorganic Heterocyclic Chemistry of Sulfur, Nitrogen and Phosphorus,' Academic Press, London, 1980, pp. 121-122.
- 12 A. J. Banister and Z. V. Hauptman, J. Chem. Soc., Dalton Trans., 1980, 731.
- 13 B E Svenningsen and R G. Hazell, personal communication.
- 14 G. M. Sheldrick, SHELX 76, program for crystal structure determination, University of Cambridge, 1976.
- 15 D. T. Cromar and J. B. Mann, Acta Crystallogr., Sect. A, 1968, 24, 321.
- 16 I. Rayment, Ph.D. Thesis, University of Durham, 1975.
- 17 M. Goehring, Sci. Chim., 1957, 9, 75.
- 18 G. K. Maclean, J. Passmore, and P. S. White, J. Chem. Soc., Dalton Trans., 1984, 211.
- 19 A. J. Banister and J. A. Durrant, J. Chem. Res., 1978, (M) 1910, 1928.
- 20 H. M. M. Shearer, A. J. Banister, J. Halfpenny, and G. Whitehead, *Polyhedron*, 1983, 2, 149.

Received 12th September 1983; Paper 3/1595